
Procedural Block-Based USDWorkflows in Conduit
Chris Rydalch
Blue Sky Studios

Colvin Kenji Endo
Blue Sky Studios

Wayne Wu
Blue Sky Studios

Figure 1: Artist adding materials to variants of an asset with block nodes.

ABSTRACT
We present a procedural block-based approach for USD pipelines
that minimizes up-front USD knowledge requirements while ensur-
ing users can still leverage the power of native USD. Building on
USD and Conduit, we define fundamental workflow principles and
philosophies on artist-interaction that guide our modular Houdini-
based toolsets. Finally, we discuss the successes and challenges in
scaling these workflows into production.

CCS CONCEPTS
• General and reference → Design; • Software and its engi-
neering → Software design engineering; • Computing method-
ologies → Animation.

KEYWORDS
pipeline, production, USD, procedural, animation

ACM Reference Format:
Chris Rydalch, Colvin Kenji Endo, and Wayne Wu. 2021. Procedural Block-
Based USD Workflows in Conduit. In Proceedings of SIGGRAPH ’21. ACM,
New York, NY, USA, 2 pages.. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In 2019, we introduced Conduit [1] and Universal Scene Descrip-
tion1 (USD) as the foundation of a new modern pipeline at Blue Sky

1https://www.openusd.org

SIGGRAPH ’21, August 09–13, 2021, Virtual
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
SIGGRAPH ’21. ACM, New York, NY, USA, 2 pages., https://doi.org/10.1145/1122445.
1122456.

Studios. Since then, we have further integrated Conduit in all appli-
cations and deployed new production workflows. The introduction
of Houdini Solaris2, enabled us to explore and architect powerful
procedural tools for artists to work with USD and Conduit.

While all production disciplines at Blue Sky deliver USD content,
we explore the disciplines that natively author in USD, bringing
forth our design philosophies and experience building procedural
workflows in Solaris. As Solaris provides a native USD context, we
aimed to expose as much flexibility of USD as possible to users.
However, our early prototypes were confusing for artists, particu-
larly in understanding their contributions to the USD and Conduit
pipeline. We reformulated a new modular toolset that attempts to
ensure USD features are easily accessible while requiring minimal
USD knowledge to begin work. These workflows were tested and
shown effective in an active studio production workflow, and the
design principles can apply to other USD pipelines.

2 BACKGROUND: CONDUIT USD
Conduit provides repository containers, Products, that form the
basis of the studio’s USD pipeline implementation. Products can
contain any type of pipeline data, typically USD. An Entity is a prod-
uct composed of contributions from different disciplines. Assets,
Scenes, and Shots are all entities in our pipeline, corresponding to
asset.usd, scene.usd, and shot.usd. An Element is a product contain-
ing the individual discipline contributions, and elements compose
to create an Entity. Elements usually contain the files that artists
work with directly, such as mtl.usd, anim.usd, or fx.usd.

3 CORE PRINCIPLES
Our Solaris workflows are guided by four key design requirements
for artist-interaction: Artists should be able to

(1) Work top-down similar to other Houdini contexts.

2https://www.sidefx.com/products/houdini/solaris

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


SIGGRAPH ’21, August 09–13, 2021, Virtual Rydalch, et al.

(2) Understand their contributions to the pipeline; a composed
working stage in LOPs should be consistent with the ultimate
exported layer.

(3) View and flexibly switch their working context (e.g. prop,
set, shot, or scene) based on discipline workflows.

(4) Build node graphs procedurally and modularly, and leverage
expressions to make setups reusable and programmable.

To achieve these, we define the following three steps to charac-
terize the central workings of our solution:

(1) Scope - Identify the artist’s working root layer and area of
interest, which may be nested within another scope.

(2) Configure - Prepare the target primitives for editing and
configure them for scene hierarchy organization.

(3) Compose - Re-construct the scene to prepare for future ed-
its using appropriate composition arcs, adhering to USD
strength ordering rules.

4 IMPLEMENTATION
In Houdini’s LOP context, we introduce a block workflow for artists
to define the scope of their work. The block nodes come in pairs,
start and end, to visually encapsulate an artist’s work, inspired by
code brackets and HTML tags. First, we scope each block pair to
correspond to a USD layer. Blocks may contain multiple nested
blocks to divide a layer’s construction. Next, the start node config-
ures the scope for editing, by adjusting the primitive hierarchy, de-
instancing, or isolating primitives as needed. Finally, the end node
composes and completes the artist’s work on that scope, preparing
USD layers and the stage for downstream operators and export.

Figure 2: Breakdown of block nodes, with nested pairs.

This core block toolset forms the basis of nearly all Solaris-based
workflows. Many cross-departmental tools are implemented fol-
lowing the block structure paradigm, regardless of asset, scene, or
shot work. For example, all Houdini workflows that interface with
Conduit employ the Element Block, the primary block for editing
and contributing USD pipeline data. Element Block is designed
to allow artists to work in context of an Entity, with consistent
composition in both the artist’s working stage and on export. For
asset work, we introduce additional blocks that are tailored for our
asset structure. These blocks are nested within the Element Block

and scope an artist’s work either in or out of an asset variant, and
in or out of the USD payload.

5 RESULTS
Our blockworkflow proved successful and intuitive for artists to use.
Explicit scoping and construction made USD exports significantly
more predictable and reliable than a previous version of the toolset.
Artists could preview their contributions in context, before export,
composed with USD data from other disciplines within the same
entity, or preview their contribution (e.g. asset) to separate entities
(e.g. a shot containing the asset) by broadcasting the changes.

Particularly, with many new to USD, the combination of the
block workflows and Solaris helped both artists and TDs to under-
stand USD, asset structure, and Conduit concepts more visually.
Artists were able to step through and visually understand how their
contributions would compose with and fit into an existing asset,
scene, or shot. The block workflows ensured that advanced USD
knowledge was not a requirement to contribute to the pipeline.

Workflows proved intuitive for artists with a baseline under-
standing of USD, and experienced users were able to leverage USD
fully to deviate and build upon typical workflows for advanced use
cases. For example, we introduced tools to broadcast asset edits
across a stage, and a node to cache out heavy USD data and per-
form stitching operations. All workflows were fully procedural and
purposely compatible with Houdini’s PDG3 architecture, which
many users utilized.

A drawback to our implementation was the overhead that each
end block imposed. These nodes composed the artist’s work but
did so into a new stage. In addition to the costs behind opening a
new stage, Hydra would clear itself out and re-sync the primitives
from the new stage. These composition factors contributed to poor
interactivity in heavy scenes.

6 FUTUREWORK
Minimizing stage re-composition throughout the block tools, poten-
tially at the cost of their explicitness, would improve interactivity
for artists using the scene viewer. Introducing scope-based popula-
tion and load masks to isolate sections of complex scenes per block
would improve artist efficiency. Integrating procedural tools within
the block nodes, such as PDG, would accelerate parallel multi-asset
and multi-shot workflows.

ACKNOWLEDGMENTS
Our work would not have been possible without the fantastic artists,
TDs, and engineers at Blue Sky Studios. We would also like to
thank SideFX, particularly Mark Tucker and his team, for providing
invaluable development insights.

REFERENCES
[1] Oliver Staeubli, Tim Hoff, Ryan Bland, Rebecca Hallac, Josh Smeltzer, Chris Ry-

dalch, Karyn Buczek Monschein, and Mark McGuire. 2019. Conduit: A Modern
Pipeline for the Open Source World. In ACM SIGGRAPH 2019 Talks (Los Angeles,
California) (SIGGRAPH ’19). Association for Computing Machinery, New York,
NY, USA, Article 47, 2 pages. https://doi.org/10.1145/3306307.3328175

3https://www.sidefx.com/products/pdg/

https://doi.org/10.1145/3306307.3328175

	Abstract
	1 Introduction
	2 Background: Conduit USD
	3 Core Principles
	4 Implementation
	5 Results
	6 Future Work
	Acknowledgments
	References

