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Introduction 
Cloth simulation has been a problem of interest in 

the field of computer graphics. The ability to 

produce visually realistic cloth motion is crucial 

in many applications such as 3D animation, 

visual effects and games.  

This project stems from multiple well-known 

researches on cloth simulation with the goal to 

implement and analyze the common numerical 

techniques used to model the physical behaviour 

of cloth. The simulation will be performed 

entirely in MATLAB. 

Physical Model 
Physically-based cloth simulation uses Newton’s 

2nd Law to describe the geometrical state of the 

cloth: 

�̈� = 𝑀−1(−
𝜕𝐸

𝜕𝑥
+ 𝐹) 

In this case, x and M represents the state (i.e. 

position) and mass of the cloth respectively. E is 

the internal energy of the cloth while F consists 

of the external forces (i.e. gravity, air drag etc.).  

In most state-of-the-art researches, the partial 

differential equation above is discretized and 

solved by modeling the cloth as a system of 

particles. These particles are connected to form a 

mesh that represents the cloth. Naturally, the 

more particles in the system, the more accurate 

the representation. 

With spatial discretization, the partial differential 

equation is now transformed into a system of 

ordinary differential equations, where each 

ordinary differential equation governs the state of 

the corresponding mass point (particle) using the 

same physical model. 

Since the internal force is expressed as the 

gradient of the internal energy, the partial 

differential equation can be rewritten as 

�̈� = 𝑀−1(𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡) 

or simply,  

�̈� = 𝑀−1𝑓(𝑥, �̇�) 

where f is the final combined net force. Given that 

this is a second order differential equation, it is 

converted into two first order differential 

equations as 

[
𝑥
�̇�
]
′
= [

𝑥
𝑣
]
′
= [

𝑣
𝑀−1𝑓] 

which are to be solved numerically. 

Dynamics 
The essence of the physical model comes from f, 

of which the internal force contribution is 

responsible for producing cloth-like behaviour. In 

this project, the internal force equations were 

taken directly from [1] and [2], which models the 

internal force using a mass-spring system. The 

detailed derivation of the equations will not be 

explained in this report.  

In short, there are two types of force interactions 

between neighbouring particles, which are called 

Type 1 and Type 2 for simplicity. Type 1 models 

the stretching force due to adjacent particles (i±1) 

while Type 2 models the compression force due 

to particles two spaces apart (i±2). Figure 1 shows 

the two types of interactions. 

 

Figure 1. Type 1 interactions (red) and Type 2 

interactions (blue)  

Type 1 is based on the linear elastic equation and 

is defined as 



𝑓𝑖 = {
𝑘𝑠(|𝑥𝑖𝑗| − 𝐿),   |𝑥𝑖𝑗| ≥ 𝐿

0,                         |𝑥𝑖𝑗| < 𝐿
} 

fi is the force acting on i due to its elastic 

connection with particle j. ks is the spring constant, 

and xij is the vector defined as xj – xi.  

Type 2 is less trivial and was derived in [2] to 

produce a better cloth “buckling” effect. It 

models the force based on the arc created when 

being compressed. The equations are given as the 

following: 

𝑓𝑖 = 𝑓𝑏
∗(

𝑥𝑖𝑗

|𝑥𝑖𝑗|
) 

𝑓𝑏
∗ = {

𝑐𝑏(|𝑥𝑖𝑗| − 𝐿) ∶ 𝑓𝑏 < 𝑐𝑏(|𝑥𝑖𝑗| − 𝐿)

𝑓𝑏       ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

𝑓𝑏 = 𝑘𝑏𝑘
2 (cos (

𝑘𝐿

2
) − 𝑠𝑖𝑛𝑐 (

𝑘𝐿

2
))

−1

 

𝑘 =
2

𝐿
𝑠𝑖𝑛𝑐−1(

|𝑥𝑖𝑗|

𝐿
) 

In this case, kb is the flexural rigidity while cb is 

the compression constant, similar to ks. 

Finally, to account for energy dissipating in the 

system, a damping force is included in the model 

for every interactive force (Type 1 and Type 2). 

The damping force is defined as 

𝑓𝑖 = 𝑘𝑑(𝑣𝑖 − 𝑣𝑗) 

where kd is the damping coefficient. 

With these two types of interactions as well as the 

damping force, the cloth internal characteristics 

can be reasonably modelled, and the result has 

been proven to be visually appealing [#]. 

Numerical Scheme: Explicit 
Using the model described above, the cloth 

simulation involves a system of ordinary 

differential equations, which is typically solved 

using explicit or implicit scheme, with the later 

being more popular for its stability. In this project, 

both explicit and implicit methods are explored. 

For the explicit scheme, Runge-Kutta’s 4th order 

method (RK4) is used to solve the differential 

equations. The numerical equations of RK4 for 

the system is defined as 

𝒇𝟎 = 𝑭(𝑡, 𝒀)  

𝒇𝟏 = 𝑭(𝑡 +
ℎ

2
, 𝒀 +

ℎ

2
𝒇𝟎) 

𝒇𝟐 = 𝑭(𝑡 +
ℎ

2
, 𝒀 +

ℎ

2
𝒇𝟏) 

𝒇𝟑 = 𝑭(𝑡 + ℎ, 𝒀 + ℎ𝒇𝟐) 

𝒀(𝑡0 + ℎ) = 𝒀(𝑡0) +
ℎ

6
(𝒇𝟎 + 𝟐𝒇𝟏 + 𝟐𝒇𝟐 + 𝒇𝟑) 

, where for this cloth system 

𝒀 = [ 
𝑥
𝑣
]  ,   𝑭 =  [

𝑣
𝑀−1𝑓(𝑌)] 

It should be noted that F is not directly dependent 

on time. Therefore, the t component in the RK4 

equations are not used in evaluation.  

Numerical Scheme: Implicit 
It is known that the behaviour of cloth produces a 

stiff problem [1]. Therefore, explicit scheme is in 

fact ill-suited for cloth simulation. Since the 

introduction to using implicit scheme for cloth 

simulation [1], implicit method has been the more 

preferred choice. 

This project uses the backward Euler’s method as 

the implicit scheme for the simulation, in similar 

fashion as [1]. To begin with, backward Euler’s 

method is defined as 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓𝑛+1 

Applying it to our differential equations: 

[
∆𝑥
∆𝑣

] = ℎ [
𝑣𝑛+1

𝑀−1𝑓𝑛+1] 

where Δv = vn+1 - vn and Δx = xn+1 - xn. 

To solve the differential equation, fn+1 must first 

be evaluate, which is usually approximated using 

first order Taylor Series expansion: 

𝑓𝑛+1 = 𝑓𝑛 + 
𝜕𝑓

𝜕𝑥
∆𝑥 + 

𝜕𝑓

𝜕𝑣
∆𝑣 

This approximation makes the scheme semi-

implicit rather than truly implicit. Replacing fn+1 

with the approximation, the velocity differential 

equation becomes 



∆𝑣 = ℎ (𝑀−1 (𝑓𝑛 + 
𝜕𝑓

𝜕𝑥
∆𝑥 + 

𝜕𝑓

𝜕𝑣
∆𝑣)) 

Substituting Δx and rearranging Δv to one side: 

(𝐼 − ℎ2𝑀−1
𝜕𝑓

𝜕𝑥
− ℎ

𝜕𝑓

𝜕𝑣
𝑀−1) ∆𝑣 = ℎ𝑀−1(𝑓𝑛 + ℎ

𝜕𝑓

𝜕𝑥
𝑣𝑛) 

Multiply both sides by M, the final equation is 

obtained as 

(𝑀 − ℎ2
𝜕𝑓

𝜕𝑥
− ℎ

𝜕𝑓

𝜕𝑣
)∆𝑣 = ℎ(𝑓𝑛 + ℎ

𝜕𝑓

𝜕𝑥
𝑣𝑛) 

or simply, 

𝑨∆𝒗 = 𝒃 

where  

𝐴 =  𝑀 − ℎ2
𝜕𝑓

𝜕𝑥
− ℎ

𝜕𝑓

𝜕𝑣
 

𝑏 =  ℎ(𝑓𝑛 + ℎ
𝜕𝑓

𝜕𝑥
𝑣𝑛) 

Therefore, to calculate the position and velocity 

at the next time step, the A must be solved to find 

Δv. The values can then be obtained by adding the 

delta values accordingly. 

In the above equations, the Jacobians, df/dx and 

df/dv, must first be calculated to solve the system 

of equations. Each type of forces has its own 

Jacobian, which are derived using vector calculus. 

The derivations will not be shown in this paper. 

For Type 1, the Jacobian matrix is 

𝜕𝑓𝑖

𝜕𝑥𝑗

= {
𝑘𝑠

𝑥𝑖𝑗𝑥𝑖𝑗
𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

+ 𝑘𝑠 (1 −
𝐿

𝑥𝑖𝑗

)(𝐼 − 
𝑥𝑖𝑗𝑥𝑖𝑗

𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

) ∶ 𝑥𝑖𝑗 ≥ 𝐿

0                                                                         ∶  𝑥𝑖𝑗 < 𝐿

} 

For Type 2, the Jacobian matrix is  

𝜕𝑓𝑖
𝜕𝑥𝑗

=
𝑑𝑓𝑏

∗

𝑑|𝑥𝑖𝑗|

𝑥𝑖𝑗𝑥𝑖𝑗
𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

+
𝑓𝑏

∗

|𝑥𝑖𝑗|
(𝐼 − 

𝑥𝑖𝑗𝑥𝑖𝑗
𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

) 

For the damping force, the Jacobian matrix is  

𝜕𝑓𝑖
𝜕𝑣𝑗

= 𝑘𝑑𝐼 

Using these equations, the net Jacobians can be 

obtained by summing up all the elements yielding 

3N x 3N sized matrices.  

Vectorized Structure 
Before implementing the solvers, it is important 

to first understand and establish the optimal 

structure for representing the system of particles. 

Perhaps one of the most intuitive ways is to create 

a struct type storage for each particle, storing its 

mass, position and velocity. The solvers would 

then run on every particle to calculate the state of 

the particle at the next time step, making it a very 

slow process.  

Since the simulation is carried out in MATLAB®, 

vectorized computation should be leveraged for 

optimal performance. As such, rather than storing 

each particle individually, the geometrical state of 

all particles is concatenated. The state variables, 

x and v, are represented as vectors with size of 3N, 

where N is the number of particles. M is then 

created as a diagonal matrix with the size of 3N x 

3N. Together, the velocity differential equation 

can be viewed as 

[
 
 
 
 
 
 
𝑣1𝑥

𝑣1𝑦

𝑣1𝑧
𝑣2𝑥

𝑣2𝑦

𝑣2𝑧

⋮ ]
 
 
 
 
 
 
′

=

[
 
 
 
 
 
 
𝑚1 0 0
0 𝑚1 0
0 0 𝑚1

⋯ ⋯

⋮
𝑚2 0 0
0 𝑚2 0
0 0 𝑚2

⋯

⋮ ⋮ ⋱]
 
 
 
 
 
 
−1

[
 
 
 
 
 
 
𝑓1𝑥

𝑓1𝑦

𝑓1𝑧

𝑓2𝑥

𝑓2𝑦

𝑓2𝑧

⋮ ]
 
 
 
 
 
 

 

This allows the solvers to do vectorized 

computation on one whole system rather than 

individual particles, speeding up the computation 

drastically. 

Implementation 
A function is created for calculating the net force 

vector f. The function loops through each particle 

and calculates the net force acting on each particle 

based on Type 1 and Type 2 interactions.  

Type 2 interaction requires the function sinc-1(x). 

Since there is no mathematical representation of 

such function, typically a look up table is created 

for linear interpolation. For this project, the 

function is evaluated numerically, by finding the 

root of the following equation 

sinc(x) − 𝑎 =
𝑠𝑖𝑛𝑥

𝑥
− 𝑎 = 0 



where a = sinc(x). The equation is solved using 

Newton-Raphson’s (NR) method. The use of NR 

scheme does increase the computational cost 

though it can provide a more accurate result. The 

number of iterations can also be limited for faster 

computation. 

Another function is also created for calculating 

the net Jacobian of the system, which is used in 

the semi-implicit backward Euler equation. The 

function also loops through each particle and 

calculates the Jacobians of each force as defined 

above. 

For Type 2 interaction’s Jacobian, the derivative 

of dfb/d|xij| is calculated using finite difference for 

simplicity. First order backward Euler is chosen 

since sinc-1(x) is not defined for x > 1. If other 

Euler’s methods are chosen, x + h would exceed 

the limit for x = 1.   

Validating the calculation obtained from the 

analytic Jacobian equations can be challenging 

especially without a full understanding of how the 

Jacobian describes the motion of cloth. As such, 

the Jacobians are also calculated numerically 

using finite difference, and the results are 

compared. 

The central difference formula for an element of 

partial derivative is 

𝜕𝑓𝑖
𝜕𝑥𝑗

=
𝑓𝑖(𝒙 + 𝒆𝒋ℎ) − 𝑓𝑖(𝒙 − 𝒆𝒋ℎ)

2ℎ
 

All Jacobian elements were recalculated using the 

above equation, which yielded a very similar 

result to the analytic solution, indicating that the 

implementation of Jacobian is most likely correct. 

The implementation of the solver functions (i.e. 

RK4, Backward Euler) is trivial and simply 

follows the equations as defined above. However, 

slight modification is required in the backward 

Euler method in order to yield a more correct 

result at larger time steps. 

At first, the implementation of the backward 

Euler’s method simply followed the scheme as 

defined earlier. This yielded similar results 

compared to RK4 at small time steps (i.e. h = 

0.001). However, when the time step was 

increased to h = 0.01, the solution differed 

significantly. Since the semi-implicit method has 

proven to work at large time steps, it was very 

likely that the solution at h = 0.01 was incorrect. 

Upon further investigation, it was discovered that 

the solution for h = 0.01 was not accurate enough. 

By plugging the obtained delta values into the 

original backward Euler equation, new corrected 

values are obtained.  

[
∆𝑥
∆𝑣

]
∗

= ℎ [
𝑣𝑛 + ∆𝑣∗

𝑀−1𝑓(𝑥𝑛 + ∆𝑥, 𝑣𝑛 + ∆𝑣)
] 

The * indicates the corrected values, whereas Δx 

and Δv are the values obtained from the semi-

implicit backward Euler equation. 

Using the corrected values, the result of the 

backward Euler solver is significantly improved. 

While the correction method can be done 

iteratively, only one iteration is used.  

Boundary Constraints 

For more interesting simulation results, points on 

the cloth should be constrained. For example, 

certain points on the cloth can be pinned, while 

observing the rest of the cloth move with respect 

to such boundary constraints.  

This project adapts from the mass modification 

technique used in [1]. The idea is to first multiply 

each element in Δv by a constant. In [1], M-1 is 

directly modified to efficiently impose the 

boundary constraint hence the name mass 

modification. However, with MATLAB’s ability 

to do element-wise operations, we define another 

constant vector, c, and simply do element-wise 

multiplication.  

∆𝒗 = 𝒄.∗ ∆𝒗 

The vector c allows you to enforce homogenous 

boundary conditions by multiplying Δv to 0. This 

fixes the velocity at its initial value.  



Additionally, specific velocity values can also be 

enforced. For this purpose, another vector, z, is 

introduced which is added to the above equation. 

∆𝒗 = 𝒄.∗ ∆𝒗 + 𝒛 

Without any boundary constraint, z is normally 0. 

If boundary condition is enforced, the specific 

delta velocity for a mass point can be stored in z, 

and using c to reject the otherwise calculated Δv, 

making Δv = z. 

Result 

To verify the stability of the numerical methods, 

both methods are run through several simulation 

tests. Since the number of particles and the size of 

the timestep are most crucial to the stability of the 

system, these parameters are varied for different 

simulation tests.  

Two types of homogenous boundary constraints 

are also tested. One boundary constraint fixes the 

corner four points and allow the rest of the cloth 

to fall under gravity (Fig. 2).  

 

Figure 2. Simple boundary constraint. 

The other boundary constraint simulates the cloth 

being fixed on a table to see the folding effect. 

 

Figure 3. Table boundary constraint. 

Below is the result of the simulation tests for both 

boundary condition. 

 RK4 BE 

5x5, h = 0.001 Pass  Pass 

10x10, h = 0.001 Pass Pass 

20x20, h = 0.001 Pass Pass 

40x40, h = 0.001  Pass  Pass  

5x5, h =0.01 Pass Pass 

10x10, h = 0.01 Pass  Pass 

20x20, h = 0.01 Pass Pass 

40x40, h = 0.01 Pass  Pass 

5x5, h = 0.1 Fail Fail 

10x10, h = 0.1 Fail Fail 

Table 1. Simulation tests result. 

Discussion 

Base on the simulation result, there are a few 

problems that should be addressed. To begin with, 

the implicit scheme did not pass any of the tests 

at h = 0.1s. This is concerning as all researches 

done using the same scheme has proven to be 

stable with timestep as large as h = 0.2s. As such, 

the backward Euler method that was 

implemented in this project may in fact not be 

fully correct. 

There are a couple of factors that may have 

caused this problem, which should be 

investigated further in the future. The first one 

concerns with the way the AΔv = b is solved. In 

most researches, the system of equations is solved 

using the conjugate gradient method [1][2], a type 

of relaxation-based technique for solving the 



system. In this project, the built-in linsolve 

function in MATLAB was used. This may have 

contributed to the less accurate result, which was 

fixed only partially when using the correction 

method.  

The inaccuracy may have also come from all the 

numerical approximations used to calculate 

derivatives, inverse, etc. Although it is unclear 

whether other researches have also used similar 

approaches, coupling numerical methods 

overwhelmingly may increase the overall error. 

The other interesting observation from the 

simulation test is the unexpected stableness for 

RK4. Despite the repetitive emphasis on the stiff 

problem caused by explicit methods, the RK4 has 

surprisingly passed all the tests that the backward 

Euler’s method did.  

This suggests that the test cases may not be 

sufficient to truly expose the problems of explicit 

method. In most researches, the test cases involve 

complex constraints and collision handling which 

were not implemented in this project for 

simplicity. However, having such complex 

system may be necessary in the implementation 

to understand fully the limitations in explicit 

methods. 

Conclusion 

The objective of this project is to implement both 

explicit and implicit methods for cloth simulation. 

Despite the implementations for both methods, 

the slight problem in the backward Euler’s 

method along with the lack of complex test cases 

yielded an inconclusive result, based entirely 

from the simulation tests. Further investigation 

must be conducted to resolve the problem in the 

implicit scheme at larger time steps.  
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