
Numerical Methods in Cloth Simulation
PC3236 Project Report – Wayne Tzu-Wen Wu

Introduction
Cloth simulation has been a problem of interest in

the field of computer graphics. The ability to

produce visually realistic cloth motion is crucial

in many applications such as 3D animation,

visual effects and games.

This project stems from multiple well-known

researches on cloth simulation with the goal to

implement and analyze the common numerical

techniques used to model the physical behaviour

of cloth. The simulation will be performed

entirely in MATLAB.

Physical Model
Physically-based cloth simulation uses Newton’s

2nd Law to describe the geometrical state of the

cloth:

�̈� = 𝑀−1(−
𝜕𝐸

𝜕𝑥
+ 𝐹)

In this case, x and M represents the state (i.e.

position) and mass of the cloth respectively. E is

the internal energy of the cloth while F consists

of the external forces (i.e. gravity, air drag etc.).

In most state-of-the-art researches, the partial

differential equation above is discretized and

solved by modeling the cloth as a system of

particles. These particles are connected to form a

mesh that represents the cloth. Naturally, the

more particles in the system, the more accurate

the representation.

With spatial discretization, the partial differential

equation is now transformed into a system of

ordinary differential equations, where each

ordinary differential equation governs the state of

the corresponding mass point (particle) using the

same physical model.

Since the internal force is expressed as the

gradient of the internal energy, the partial

differential equation can be rewritten as

�̈� = 𝑀−1(𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡)

or simply,

�̈� = 𝑀−1𝑓(𝑥, �̇�)

where f is the final combined net force. Given that

this is a second order differential equation, it is

converted into two first order differential

equations as

[
𝑥
�̇�
]
′
= [

𝑥
𝑣
]
′
= [

𝑣
𝑀−1𝑓]

which are to be solved numerically.

Dynamics
The essence of the physical model comes from f,

of which the internal force contribution is

responsible for producing cloth-like behaviour. In

this project, the internal force equations were

taken directly from [1] and [2], which models the

internal force using a mass-spring system. The

detailed derivation of the equations will not be

explained in this report.

In short, there are two types of force interactions

between neighbouring particles, which are called

Type 1 and Type 2 for simplicity. Type 1 models

the stretching force due to adjacent particles (i±1)

while Type 2 models the compression force due

to particles two spaces apart (i±2). Figure 1 shows

the two types of interactions.

Figure 1. Type 1 interactions (red) and Type 2

interactions (blue)

Type 1 is based on the linear elastic equation and

is defined as

𝑓𝑖 = {
𝑘𝑠(|𝑥𝑖𝑗| − 𝐿), |𝑥𝑖𝑗| ≥ 𝐿

0, |𝑥𝑖𝑗| < 𝐿
}

fi is the force acting on i due to its elastic

connection with particle j. ks is the spring constant,

and xij is the vector defined as xj – xi.

Type 2 is less trivial and was derived in [2] to

produce a better cloth “buckling” effect. It

models the force based on the arc created when

being compressed. The equations are given as the

following:

𝑓𝑖 = 𝑓𝑏
∗(

𝑥𝑖𝑗

|𝑥𝑖𝑗|
)

𝑓𝑏
∗ = {

𝑐𝑏(|𝑥𝑖𝑗| − 𝐿) ∶ 𝑓𝑏 < 𝑐𝑏(|𝑥𝑖𝑗| − 𝐿)

𝑓𝑏 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

𝑓𝑏 = 𝑘𝑏𝑘
2 (cos (

𝑘𝐿

2
) − 𝑠𝑖𝑛𝑐 (

𝑘𝐿

2
))

−1

𝑘 =
2

𝐿
𝑠𝑖𝑛𝑐−1(

|𝑥𝑖𝑗|

𝐿
)

In this case, kb is the flexural rigidity while cb is

the compression constant, similar to ks.

Finally, to account for energy dissipating in the

system, a damping force is included in the model

for every interactive force (Type 1 and Type 2).

The damping force is defined as

𝑓𝑖 = 𝑘𝑑(𝑣𝑖 − 𝑣𝑗)

where kd is the damping coefficient.

With these two types of interactions as well as the

damping force, the cloth internal characteristics

can be reasonably modelled, and the result has

been proven to be visually appealing [#].

Numerical Scheme: Explicit
Using the model described above, the cloth

simulation involves a system of ordinary

differential equations, which is typically solved

using explicit or implicit scheme, with the later

being more popular for its stability. In this project,

both explicit and implicit methods are explored.

For the explicit scheme, Runge-Kutta’s 4th order

method (RK4) is used to solve the differential

equations. The numerical equations of RK4 for

the system is defined as

𝒇𝟎 = 𝑭(𝑡, 𝒀)

𝒇𝟏 = 𝑭(𝑡 +
ℎ

2
, 𝒀 +

ℎ

2
𝒇𝟎)

𝒇𝟐 = 𝑭(𝑡 +
ℎ

2
, 𝒀 +

ℎ

2
𝒇𝟏)

𝒇𝟑 = 𝑭(𝑡 + ℎ, 𝒀 + ℎ𝒇𝟐)

𝒀(𝑡0 + ℎ) = 𝒀(𝑡0) +
ℎ

6
(𝒇𝟎 + 𝟐𝒇𝟏 + 𝟐𝒇𝟐 + 𝒇𝟑)

, where for this cloth system

𝒀 = [
𝑥
𝑣
] , 𝑭 = [

𝑣
𝑀−1𝑓(𝑌)]

It should be noted that F is not directly dependent

on time. Therefore, the t component in the RK4

equations are not used in evaluation.

Numerical Scheme: Implicit
It is known that the behaviour of cloth produces a

stiff problem [1]. Therefore, explicit scheme is in

fact ill-suited for cloth simulation. Since the

introduction to using implicit scheme for cloth

simulation [1], implicit method has been the more

preferred choice.

This project uses the backward Euler’s method as

the implicit scheme for the simulation, in similar

fashion as [1]. To begin with, backward Euler’s

method is defined as

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓𝑛+1

Applying it to our differential equations:

[
∆𝑥
∆𝑣

] = ℎ [
𝑣𝑛+1

𝑀−1𝑓𝑛+1]

where Δv = vn+1 - vn and Δx = xn+1 - xn.

To solve the differential equation, fn+1 must first

be evaluate, which is usually approximated using

first order Taylor Series expansion:

𝑓𝑛+1 = 𝑓𝑛 +
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑣
∆𝑣

This approximation makes the scheme semi-

implicit rather than truly implicit. Replacing fn+1

with the approximation, the velocity differential

equation becomes

∆𝑣 = ℎ (𝑀−1 (𝑓𝑛 +
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑣
∆𝑣))

Substituting Δx and rearranging Δv to one side:

(𝐼 − ℎ2𝑀−1
𝜕𝑓

𝜕𝑥
− ℎ

𝜕𝑓

𝜕𝑣
𝑀−1) ∆𝑣 = ℎ𝑀−1(𝑓𝑛 + ℎ

𝜕𝑓

𝜕𝑥
𝑣𝑛)

Multiply both sides by M, the final equation is

obtained as

(𝑀 − ℎ2
𝜕𝑓

𝜕𝑥
− ℎ

𝜕𝑓

𝜕𝑣
)∆𝑣 = ℎ(𝑓𝑛 + ℎ

𝜕𝑓

𝜕𝑥
𝑣𝑛)

or simply,

𝑨∆𝒗 = 𝒃

where

𝐴 = 𝑀 − ℎ2
𝜕𝑓

𝜕𝑥
− ℎ

𝜕𝑓

𝜕𝑣

𝑏 = ℎ(𝑓𝑛 + ℎ
𝜕𝑓

𝜕𝑥
𝑣𝑛)

Therefore, to calculate the position and velocity

at the next time step, the A must be solved to find

Δv. The values can then be obtained by adding the

delta values accordingly.

In the above equations, the Jacobians, df/dx and

df/dv, must first be calculated to solve the system

of equations. Each type of forces has its own

Jacobian, which are derived using vector calculus.

The derivations will not be shown in this paper.

For Type 1, the Jacobian matrix is

𝜕𝑓𝑖

𝜕𝑥𝑗

= {
𝑘𝑠

𝑥𝑖𝑗𝑥𝑖𝑗
𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

+ 𝑘𝑠 (1 −
𝐿

𝑥𝑖𝑗

)(𝐼 −
𝑥𝑖𝑗𝑥𝑖𝑗

𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

) ∶ 𝑥𝑖𝑗 ≥ 𝐿

0 ∶ 𝑥𝑖𝑗 < 𝐿

}

For Type 2, the Jacobian matrix is

𝜕𝑓𝑖
𝜕𝑥𝑗

=
𝑑𝑓𝑏

∗

𝑑|𝑥𝑖𝑗|

𝑥𝑖𝑗𝑥𝑖𝑗
𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

+
𝑓𝑏

∗

|𝑥𝑖𝑗|
(𝐼 −

𝑥𝑖𝑗𝑥𝑖𝑗
𝑇

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

)

For the damping force, the Jacobian matrix is

𝜕𝑓𝑖
𝜕𝑣𝑗

= 𝑘𝑑𝐼

Using these equations, the net Jacobians can be

obtained by summing up all the elements yielding

3N x 3N sized matrices.

Vectorized Structure
Before implementing the solvers, it is important

to first understand and establish the optimal

structure for representing the system of particles.

Perhaps one of the most intuitive ways is to create

a struct type storage for each particle, storing its

mass, position and velocity. The solvers would

then run on every particle to calculate the state of

the particle at the next time step, making it a very

slow process.

Since the simulation is carried out in MATLAB®,

vectorized computation should be leveraged for

optimal performance. As such, rather than storing

each particle individually, the geometrical state of

all particles is concatenated. The state variables,

x and v, are represented as vectors with size of 3N,

where N is the number of particles. M is then

created as a diagonal matrix with the size of 3N x

3N. Together, the velocity differential equation

can be viewed as

[

𝑣1𝑥

𝑣1𝑦

𝑣1𝑧
𝑣2𝑥

𝑣2𝑦

𝑣2𝑧

⋮]

′

=

[

𝑚1 0 0
0 𝑚1 0
0 0 𝑚1

⋯ ⋯

⋮
𝑚2 0 0
0 𝑚2 0
0 0 𝑚2

⋯

⋮ ⋮ ⋱]

−1

[

𝑓1𝑥

𝑓1𝑦

𝑓1𝑧

𝑓2𝑥

𝑓2𝑦

𝑓2𝑧

⋮]

This allows the solvers to do vectorized

computation on one whole system rather than

individual particles, speeding up the computation

drastically.

Implementation
A function is created for calculating the net force

vector f. The function loops through each particle

and calculates the net force acting on each particle

based on Type 1 and Type 2 interactions.

Type 2 interaction requires the function sinc-1(x).

Since there is no mathematical representation of

such function, typically a look up table is created

for linear interpolation. For this project, the

function is evaluated numerically, by finding the

root of the following equation

sinc(x) − 𝑎 =
𝑠𝑖𝑛𝑥

𝑥
− 𝑎 = 0

where a = sinc(x). The equation is solved using

Newton-Raphson’s (NR) method. The use of NR

scheme does increase the computational cost

though it can provide a more accurate result. The

number of iterations can also be limited for faster

computation.

Another function is also created for calculating

the net Jacobian of the system, which is used in

the semi-implicit backward Euler equation. The

function also loops through each particle and

calculates the Jacobians of each force as defined

above.

For Type 2 interaction’s Jacobian, the derivative

of dfb/d|xij| is calculated using finite difference for

simplicity. First order backward Euler is chosen

since sinc-1(x) is not defined for x > 1. If other

Euler’s methods are chosen, x + h would exceed

the limit for x = 1.

Validating the calculation obtained from the

analytic Jacobian equations can be challenging

especially without a full understanding of how the

Jacobian describes the motion of cloth. As such,

the Jacobians are also calculated numerically

using finite difference, and the results are

compared.

The central difference formula for an element of

partial derivative is

𝜕𝑓𝑖
𝜕𝑥𝑗

=
𝑓𝑖(𝒙 + 𝒆𝒋ℎ) − 𝑓𝑖(𝒙 − 𝒆𝒋ℎ)

2ℎ

All Jacobian elements were recalculated using the

above equation, which yielded a very similar

result to the analytic solution, indicating that the

implementation of Jacobian is most likely correct.

The implementation of the solver functions (i.e.

RK4, Backward Euler) is trivial and simply

follows the equations as defined above. However,

slight modification is required in the backward

Euler method in order to yield a more correct

result at larger time steps.

At first, the implementation of the backward

Euler’s method simply followed the scheme as

defined earlier. This yielded similar results

compared to RK4 at small time steps (i.e. h =

0.001). However, when the time step was

increased to h = 0.01, the solution differed

significantly. Since the semi-implicit method has

proven to work at large time steps, it was very

likely that the solution at h = 0.01 was incorrect.

Upon further investigation, it was discovered that

the solution for h = 0.01 was not accurate enough.

By plugging the obtained delta values into the

original backward Euler equation, new corrected

values are obtained.

[
∆𝑥
∆𝑣

]
∗

= ℎ [
𝑣𝑛 + ∆𝑣∗

𝑀−1𝑓(𝑥𝑛 + ∆𝑥, 𝑣𝑛 + ∆𝑣)
]

The * indicates the corrected values, whereas Δx

and Δv are the values obtained from the semi-

implicit backward Euler equation.

Using the corrected values, the result of the

backward Euler solver is significantly improved.

While the correction method can be done

iteratively, only one iteration is used.

Boundary Constraints

For more interesting simulation results, points on

the cloth should be constrained. For example,

certain points on the cloth can be pinned, while

observing the rest of the cloth move with respect

to such boundary constraints.

This project adapts from the mass modification

technique used in [1]. The idea is to first multiply

each element in Δv by a constant. In [1], M-1 is

directly modified to efficiently impose the

boundary constraint hence the name mass

modification. However, with MATLAB’s ability

to do element-wise operations, we define another

constant vector, c, and simply do element-wise

multiplication.

∆𝒗 = 𝒄.∗ ∆𝒗

The vector c allows you to enforce homogenous

boundary conditions by multiplying Δv to 0. This

fixes the velocity at its initial value.

Additionally, specific velocity values can also be

enforced. For this purpose, another vector, z, is

introduced which is added to the above equation.

∆𝒗 = 𝒄.∗ ∆𝒗 + 𝒛

Without any boundary constraint, z is normally 0.

If boundary condition is enforced, the specific

delta velocity for a mass point can be stored in z,

and using c to reject the otherwise calculated Δv,

making Δv = z.

Result

To verify the stability of the numerical methods,

both methods are run through several simulation

tests. Since the number of particles and the size of

the timestep are most crucial to the stability of the

system, these parameters are varied for different

simulation tests.

Two types of homogenous boundary constraints

are also tested. One boundary constraint fixes the

corner four points and allow the rest of the cloth

to fall under gravity (Fig. 2).

Figure 2. Simple boundary constraint.

The other boundary constraint simulates the cloth

being fixed on a table to see the folding effect.

Figure 3. Table boundary constraint.

Below is the result of the simulation tests for both

boundary condition.

 RK4 BE

5x5, h = 0.001 Pass Pass

10x10, h = 0.001 Pass Pass

20x20, h = 0.001 Pass Pass

40x40, h = 0.001 Pass Pass

5x5, h =0.01 Pass Pass

10x10, h = 0.01 Pass Pass

20x20, h = 0.01 Pass Pass

40x40, h = 0.01 Pass Pass

5x5, h = 0.1 Fail Fail

10x10, h = 0.1 Fail Fail

Table 1. Simulation tests result.

Discussion

Base on the simulation result, there are a few

problems that should be addressed. To begin with,

the implicit scheme did not pass any of the tests

at h = 0.1s. This is concerning as all researches

done using the same scheme has proven to be

stable with timestep as large as h = 0.2s. As such,

the backward Euler method that was

implemented in this project may in fact not be

fully correct.

There are a couple of factors that may have

caused this problem, which should be

investigated further in the future. The first one

concerns with the way the AΔv = b is solved. In

most researches, the system of equations is solved

using the conjugate gradient method [1][2], a type

of relaxation-based technique for solving the

system. In this project, the built-in linsolve

function in MATLAB was used. This may have

contributed to the less accurate result, which was

fixed only partially when using the correction

method.

The inaccuracy may have also come from all the

numerical approximations used to calculate

derivatives, inverse, etc. Although it is unclear

whether other researches have also used similar

approaches, coupling numerical methods

overwhelmingly may increase the overall error.

The other interesting observation from the

simulation test is the unexpected stableness for

RK4. Despite the repetitive emphasis on the stiff

problem caused by explicit methods, the RK4 has

surprisingly passed all the tests that the backward

Euler’s method did.

This suggests that the test cases may not be

sufficient to truly expose the problems of explicit

method. In most researches, the test cases involve

complex constraints and collision handling which

were not implemented in this project for

simplicity. However, having such complex

system may be necessary in the implementation

to understand fully the limitations in explicit

methods.

Conclusion

The objective of this project is to implement both

explicit and implicit methods for cloth simulation.

Despite the implementations for both methods,

the slight problem in the backward Euler’s

method along with the lack of complex test cases

yielded an inconclusive result, based entirely

from the simulation tests. Further investigation

must be conducted to resolve the problem in the

implicit scheme at larger time steps.

References
[1] Baraff, David and Witkin A.: Large steps in

cloth simulation, Computer Graphics (Proc.

SIGGRAPH), pp. 43-54, 1998

[2] Choi, K.-J., Ko H.-S.: Stable but responsive

cloth, Computer Graphics (Proc. SIGGRAPH),

2002

